skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khanda, Arindam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The multi objective shortest path (MOSP) problem, crucial in various practical domains, seeks paths that optimize multiple objectives. Due to its high computational complexity, numerous parallel heuristics have been developed for static networks. However, real-world networks are often dynamic where the network topology changes with time. Efficiently updating the shortest path in such networks is challenging, and existing algorithms for static graphs are inadequate for these dynamic conditions, necessitating novel approaches. Here, we first develop a parallel algorithm to efficiently update a single objective shortest path (SOSP) in fully dynamic networks, capable of accommodating both edge insertions and deletions. Building on this, we propose DynaMOSP, a parallel heuristic for Dynamic Multi Objective Shortest Path searches in large, fully dynamic networks. We provide a theoretical analysis of the conditions to achieve Pareto optimality. Furthermore, we devise a dedicated shared memory CPU implementation along with a version for heterogeneous computing environments. Empirical analysis on eight real-world graphs demonstrates that our method scales effectively. The shared memory CPU implementation achieves an average speedup of 12.74× and a maximum of 57.22×, while on an Nvidia GPU, it attains an average speedup of 69.19×, reaching up to 105.39× when compared to state-of-the-art techniques. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available March 17, 2026
  3. Free, publicly-accessible full text available January 4, 2026
  4. Free, publicly-accessible full text available December 8, 2025
  5. We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms. 
    more » « less